E-Axle Test Bench

E-Axle Test Bench

Electric drives are at the heart of both battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs), As manufacturers face growing demands for industrialization and increased production volumes, Our comprehensive solutions support every phase of the project lifecycle—from concept development to implementation and operation. These solutions are designed to cater to a wide range of vehicles, including passenger cars, as well as light and heavy commercial vehicles.

The drive system of an electric vehicle (EV) comprises several key components. Central to this is the e-axle or electric drive unit (EDU), which integrates the electric motor, transmission, and inverter. While we provide dedicated testing solutions for each individual component, it is equally important to test the fully assembled e-axle to identify and address potential assembly-related defects, such as Noise, Vibration, Harshness (NVH) and EMC/EMI testing, which significantly impacts driver and passenger satisfaction and ensure the safety of the vehicle

The system can be 3ways/1 input+2 output, 4 ways, 5 ways, which can be integrated as powertrain testing solution
E-Axle Test Bench​

The comprehensive 3-in-1 electric axle test benches for both light-duty and heavy-duty vehicles address crucial factors such as performance, durability, noise, vibration, and harshness (NVH), as well as electromagnetic compatibility (EMC). These advanced test benches are designed to support manufacturers in developing sustainable electric drive systems that meet the highest standards of performance and quality in the automotive industry. By thoroughly assessing these key areas, manufacturers can ensure their electric axles are reliable, efficient, and capable of delivering optimal performance under real-world conditions.

E-Axle

Light-duty electric axle

We offer a customized solution for the development and validation of light-duty e-axles, whether for single or dual motor configurations. With shortest lead times, manufacturers can quickly begin lifecycle and thermal endurance testing, as well as detailed electrical, mechanical, and thermal property analysis. This advanced test system enables precise performance and functional testing at speeds up to 20,000 rpm and power levels up to 400 kW, supported by a direct drive dynamometer, flexible multi-channel cooling conditioning, and a climatic chamber for comprehensive environmental simulation.

The light-duty electric axle test bench is a customizable solution tailored to the specific needs of manufacturers, whether they are working with single or dual motor configurations. This flexibility enables engineers to develop and validate various units under test (UUTs) efficiently. Equipped with advanced instrumentation and testing capabilities, the test bench allows for comprehensive assessments of the electric axle’s performance characteristics. Its design ensures quick adaptation to different configurations and testing scenarios, making it easier for manufacturers to optimize their electric drive systems for a wide range of applications.

A key advantage of the light-duty electric axle test bench is its rapid delivery time, which allows clients to perform essential in-service lifetime and thermal endurance testing with minimal delay. This expedited timeline is especially critical for manufacturers aiming to bring their products to market quickly while ensuring compliance with rigorous industry standards. The test bench provides valuable insights into mechanical, electrical, and thermal properties, helping engineers identify potential issues early in the development process. By conducting these thorough evaluations, manufacturers can refine their designs, enhance durability, and improve overall performance, ultimately leading to the successful deployment of high-quality electric drive systems in light-duty vehicles.

Heavy-duty electric axle

The Heavy Duty test system is a standardized solution designed for the development and validation of e-axles in commercial vehicles, specifically tailored for trucks and buses. It enables comprehensive lifecycle testing under realistic, vehicle-like conditions. The system supports precise performance and functional testing, with capabilities of up to 20,000 rpm and 400 kW. Equipped with a direct-drive dynamometer, flexible multi-channel cooling conditioning, and a climatic chamber for environmental simulations, it ensures that the e-axles perform optimally across various operating conditions.

The X way-in-1 electric axle test bench is engineered to meet the temperature and service lifespan certification requirements for electric drive units. This system is optimized for efficient testing, allowing seamless integration of duty cycles with pre-configured standardized cycles for temperature aging and lifespan certification during the operation of the Unit Under Test (UUT). This flexibility ensures that manufacturers can thoroughly evaluate the performance and durabilityof their electric drive systems, resulting in more robust and reliable products.

Electric axle test bench for NVH/EMC

The electric axle test bench for NVH is designed to redefine silence, comfort, and overall performance in both light-duty and heavy-duty e-axle solutions. With exceptionally low operating noise levels, it ensures superior NVH performance, making it ideal for the development of quiet and smooth electric powertrains. The system also features semi-automatic track width and wheelbase adjustments, which streamline high-end NVH development, providing engineers with the flexibility to optimize performance easily.

This innovative solution sets new industry standards for NVH engineering in both current and future e-powertrains, ensuring that electric axles deliver not only optimal performance but also maximum user comfort and satisfaction. It is designed to meet the demands of a wide range of mobility applications, enhancing the driving experience and making it more enjoyable for all users.

To measure the electromagnetic compatibility (EMC) of e-drive systems and assess both their emissions and immunity to interference, specialized EMC test systems are essential. We offer precise EMC measurements and testing in accordance with the CISPR 25 standard, ensuring that your systems meet the most stringent industry regulations.

This solution allows for effective evaluation of both the emissions and immunity of your e-axle components, guaranteeing the reliability and compliance of electric drive systems. By using this testing approach, manufacturers can ensure their systems are ready for future mobility applications, offering both performance and regulatory compliance.

Applications of Electric Drive Unit and Electric Axle Test Bench:

  1. Service Lifespan Testing

    • Assessing the durability and longevity of electric drive systems and axles under simulated real-world conditions.

  2. High-Speed and Torque Testing

    • Evaluating performance at both high speeds and high torque levels to ensure optimal functionality under demanding operating conditions.

  3. Torque Differential and Speed Difference Testing

    • Measuring and analyzing variations in torque and speed across the electric axle or drive unit to ensure smooth operation and performance balance.

  4. Peak Power Testing

    • Assessing the system’s ability to handle short bursts of peak power, ensuring the e-drive can deliver maximum output when required.

  5. Electrical to Mechanical Power Efficiency Testing

    • Analyzing the conversion efficiency from electrical to mechanical power, helping to identify areas for improvement in energy use.

  6. Torque Interface to Electric Drive in No-Throttle Test

    • Evaluating torque response and control when the throttle is not engaged, simulating idle or coasting conditions.

  7. xCU Interface to E-Drive for Throttle Test

    • Testing the responsiveness and control of the e-drive when interfaced with the throttle control unit (xCU), simulating real-world acceleration and deceleration.

  8. Driving Cycle Testing

    • Simulating real-world driving conditions by using predefined driving cycles to assess the overall performance and efficiency of the electric drive unit.

  9. Vibration Analysis

    • Analyzing vibrations generated during operation to identify and mitigate issues related to mechanical resonance, efficiency losses, or NVH (Noise, Vibration, and Harshness) concerns.

Thermal Examinations:

  1. Cooling System Stability Test

    • Testing the stability and effectiveness of the cooling system to ensure that the electric drive unit maintains optimal operating temperature.

  2. High-Temperature Operating Endurance (HTOE)

    • Assessing the electric drive’s ability to operate reliably under high-temperature conditions over extended periods.

  3. Powered Thermal Cycle Endurance (PTCE)

    • Evaluating the system’s ability to withstand repeated thermal cycles, simulating various temperature extremes that may occur during operation.

These testing capabilities ensure that electric drive units and axles are thoroughly validated for performance, reliability, and efficiency, preparing them for integration into next-generation mobility solutions.

 

Dynamometer


We provide several type of dynamometer such as:
GZC series Hysteresis dynamometer,
GZF series Magnetic powder dynamometer,
GZW series Eddy current dynamometer, GZDL series Electric dynamometer.
Measurable Parameters:
DC (or Single-phase AC) Motor:
Input power P1, voltage U, current I (power factor, frequency) Output power P2, torque T, speed n efficiency.
Three-phase AC Motor:
Input power P1, voltage U, current I (power factor, frequency) Output power P2, torque T, speed n efficiency.
Motor And Driver:
Driver input power P1, voltage U, current I (power factor, frequency) Drive-motor power P2, voltage U1-U2-U3, current I1-I2-I3, power factor, Frequency motor output power P3, torque T, speed n drive efficiency, motor efficiency, overall machine efficiency.

Motor Testing System


With manual, fixed-point, and automatic test methods, the load can be automatically loaded according to the setting, and the characteristic curve of the motor from no load to blocked (or set value) can be scanned;Test result: The motor test data is displayed or printed in the form of report or curve, and can be saved and viewed; when the curve is displayed, the curve coordinate parameters and the selection of abscissa and ordinate can be modified;
Measurable parameters; Driver input voltage, current, power Driver output voltage, current, power, power factor, frequency Motor output torque, speed, power Drive efficiency, motor efficiency, total motor efficiency.

Electric drive system EMC/EMI dynamometer system


With the rapid development of electric drive systems, especially new energy vehicles, the issue of electromagnetic compatibility has received more and more attention. The electric drive system of new energy vehicles has the characteristics of high voltage, high current, complex structure, and diversified coupling paths, and is the main source of interference.The electric drive EMC/EMI test system under simulated actual load conditions is composed of an anechoic chamber, a dynamometer system, a battery simulator, a power amplifier and its shielding room, a control room and its shielding room, a cooling system, and a shielding shaft system. According to the requirements of CISPR25, GB/T18655, GB/T36282, GB/T18387 and other standards, it can meet the conduction emission, radiation emission and radiation immunity, high current injection and other tests of battery packs, motors, controllers, powertrains, etc. .

Vehicle axle coupling dynamometer system


The vehicle axle coupling dynamometer test system consists of a mobile low-inertia electric dynamometer, dynamometer driver, battery simulator, electrical control cabinet, measurement sensors, vehicle windward cooling system, traffic real-life simulation system, main control computer, electrical Control cabinet and other components.The dynamometer can perform speed and torque control to simulate road load. Load simulation methods include: constant torque control, calculated road spectrum simulation, actual road spectrum import, and user-defined load spectrum. The power analyzer measures the current, voltage and power of each energy consumption unit of the tested vehicle, analyzes the energy flow of the vehicle under different operating conditions, and draws the energy spectrum of the entire vehicle. The dynamometer adopts a low-inertia dynamometer, which has extremely high dynamic characteristics and can simulate rapidly changing working conditions and simulate different road models. By integrating into the traffic scene simulation system, real vehicle actions under different road conditions can be truly reproduced, including the driver's operating comfort. The system can also be transformed into a powertrain test system, and the battery simulator can be connected to the powertrain drive to test the powertrain.

Vehicle EMC/EMI Dynamometer System


The vehicle EMC/EMI test system generally consists of an anechoic chamber or reverberation chamber, measuring instruments, and a hub dynamometer system that simulates the road load of the vehicle. The rotating hub dynamometer system that simulates vehicle load can be designed as a two-wheel drive, four-wheel drive or more shaft drive dynamometer according to the number of drive shafts of the vehicle. The dynamometer system can also adopt a structural type embedded in the turntable, or a mobile type.

Transmission (reducer) test system


The high-speed reducer test bench consists of a low-inertia load analog dynamometer, a high-speed compact drive motor, a frequency converter, an environmental chamber, a cooling system, a high-precision sensor, a vibration monitoring and early warning system, a mechanical system, a real-time control system of the dynamometer, and a main control System and other parts. For the electric drive powertrain test bench, there is no need for high-speed drive motors, only low-inertia load simulation motors. The real-time dynamic control system can realize the speed and torque control through the real-time controller and simulate the actual load. The main control system can communicate with the environmental chamber, power analyzer, cooling system, EUT, etc., and realize control. The data acquisition system collects signals from torque sensors, vibration sensors, temperature sensors, pressure sensors, and other sensors, and transmits them to the main control system at a high speed. The sensor data can be displayed, saved and processed in the software interface.

Aviation customized high-speed transmission test system


We provide customized test test systems for aviation high-speed transmission systems, such as high-speed generators, high-speed transmission boxes, etc. Various types of shafting, dynamometer systems and electrical loads can be designed according to actual needs.

error: Content is protected !!